Business Calculus (MAC 2233)

Date_____

Find the equation of the tangent line to f(x)at the given value of x.

1)
$$f(x) = x^3 - 4x + 3$$
 at $x = 2$

Find the equation of the tangent line to the graph of the given function at the given value of x

2) $f(x) = (x^2 + 28)^{4/5}$; x = 2

Find the derivative.(no need to similify the answer)

3)
$$f(x) = \frac{x+3}{\sqrt{x}}$$
, find f'(x)

Find f'(x) for the following function.

4) $(x^2 - 2x + 2)(3x^3 - x^2 + 5)$

Find the derivative.

- 5) Find f'(x) for $f(x) = 8e^{x} + 4 \ln(x^{3})$.
- 6) Find f'(x) for $f(x) = x^2 \ln 7x$.

7) $v = e^{x^4} \ln x$

Differentiate.

8) Find
$$\frac{dy}{dx}$$
 for $y = \frac{9x - 4}{8x^2 + 3}$

Provide an appropriate response.

9) Find
$$\frac{dy}{dx}$$
 for $y = \ln (7x^3 - x^2)$

10) Find
$$\frac{dy}{dx}$$
 for $y = 8x-1$

Solve the problem.

11) Given: $C(x) = 0.3x^3 - 3x^2 + 20x + 40; x = 70$

Assume C(x) is in dollars.

- i) Determine the marginal cost function MC.
- ii) For the given production level, x, evaluate MC(x) and interpret.
- iii) Evaluate the actual change in cost by evaluating C(x + 1) C(x) and compare with the answer to part ii.
- 12) The yearly enrollment at a certain university can be modeled by the function

$$f(x) = 1.98x^2 + 48.37x + 359.6, \qquad 1 \le x \le 10$$

where x is the number of year since 1992. Determine f'(8) and interpret.

Use the compound interest formula to determine the final value of the given amount.

13) \$420 at 5% compounded continuously for 4 years

Solve the problem.

14) How long must \$5700 be in a bank at 7% compounded annually to become \$13,736.12? (Round to the nearest year.)

Find dy for the given values of x and Δx .

15) $y = x^3 - 4x^2 + 2x + 1$; x = 8, $\Delta x = -0.3$

Answer Key Testname: REVIEW FOR TEST2SPRING14

1)
$$y = 8x - 13$$

2) $y = \frac{8}{5}x + \frac{64}{5}$
3) $\frac{1}{2\sqrt{x}} - \frac{3}{2x^{3/2}}$
4) $15x^4 - 28x^3 + 24x^2 + 6x - 10$
5) $8e^x + \frac{12}{x}$
6) $f'(x) = x(1 + 2\ln|7x|)$
7) $\frac{e^{x^4} + 4x^4 e^{x^4} \ln x}{x}$
8) $\frac{dy}{dx} = \frac{-72x^2 + 64x + 27}{(8x^2 + 3)^2}$
9) $\frac{21x - 2}{7x^2 - x}$

10) 8x-1 ln(8)

- 11) i) $MC(x) = 0.9x^2 6x + 20$
 - ii) MC(70) = 4010; The estimated cost of producing the 71st unit is \$4010.
 - iii) C(71) C(70) = 4070.3; The actual cost of producing the 71st unit is \$4070.30. The estimate in part ii is off by \$60.30.
- 12) f'(8) = 80.05; In 2000, the enrollment was increasing at a rate of 80.05 students per year.
- 13) \$512.99
- 14) 13 yr
- 15) -39