Name \qquad
Find the equation of the tangent line to $f(x)$ at the given value of x.

1) $f(x)=x^{3}-4 x+3$ at $x=2$

Find the equation of the tangent line to the graph of the given function at the given value of x.
2) $f(x)=\left(x^{2}+28\right)^{4 / 5} ; x=2$

Find the derivative.(no need to simlify the answer)

3) $f(x)=\frac{x+3}{\sqrt{x}}$, find $f^{\prime}(x)$

Find $f^{\prime}(x)$ for the following function.
4) $\left(x^{2}-2 x+2\right)\left(3 x^{3}-x^{2}+5\right)$

Find the derivative.
5) Find $f^{\prime}(x)$ for $f(x)=8 e^{x}+4 \ln \left(x^{3}\right)$.
6) Find $f^{\prime}(x)$ for $f(x)=x^{2} \ln 7 x$.
7) $y=e^{x^{4}} \ln x$

Differentiate.

8) Find $\frac{d y}{d x}$ for $y=\frac{9 x-4}{8 x^{2}+3}$

Provide an appropriate response.

9) Find $\frac{d y}{d x}$ for $y=\ln \left(7 x^{3}-x^{2}\right)$
10) Find $\frac{d y}{d x}$ for $y=8^{x-1}$

Solve the problem.
11) Given: $C(x)=0.3 x^{3}-3 x^{2}+20 x+40 ; x=70$

Assume $C(x)$ is in dollars.
i) Determine the marginal cost function MC.
ii) For the given production level, x, evaluate $M C(x)$ and interpret.
iii) Evaluate the actual change in cost by evaluating $C(x+1)-C(x)$ and compare with the answer to part ii.
12) The yearly enrollment at a certain university can be modeled by the function

$$
f(x)=1.98 x^{2}+48.37 x+359.6, \quad 1 \leq x \leq 10
$$

where x is the number of year since 1992. Determine $f^{\prime}(8)$ and interpret.

Use the compound interest formula to determine the final value of the given amount.
13) $\$ 420$ at 5% compounded continuously for 4 years

Solve the problem.
14) How long must $\$ 5700$ be in a bank at 7% compounded annually to become $\$ 13,736.12$? (Round to the nearest year.)

Find dy for the given values of x and Δx.
15) $y=x^{3}-4 x^{2}+2 x+1 ; \quad x=8, \Delta x=-0.3$

Answer Key

Testname: REVIEW FOR TEST2SPRING14

1) $y=8 x-13$
2) $y=\frac{8}{5} x+\frac{64}{5}$
3) $\frac{1}{2 \sqrt{x}}-\frac{3}{2 x^{3 / 2}}$
4) $15 x^{4}-28 x^{3}+24 x^{2}+6 x-10$
5) $8 e^{x}+\frac{12}{x}$
6) $f^{\prime}(x)=x(1+2 \ln |7 x|)$
7) $\frac{e^{x^{4}}+4 x^{4} e^{x^{4}} \ln x}{x}$
8) $\frac{d y}{d x}=\frac{-72 x^{2}+64 x+27}{\left(8 x^{2}+3\right)^{2}}$
9) $\frac{21 x-2}{7 x^{2}-x}$
10) $8^{x-1} \ln (8)$
11) i) $M C(x)=0.9 x^{2}-6 x+20$
ii) $\mathrm{MC}(70)=4010$; The estimated cost of producing the $71^{\text {st }}$ unit is $\$ 4010$.
iii) $C(71)-C(70)=4070.3$; The actual cost of producing the $71^{\text {st }}$ unit is $\$ 4070.30$. The estimate in part ii is off by \$60.30.
12) $\mathrm{f}^{\prime}(8)=80.05$; In 2000, the enrollment was increasing at a rate of 80.05 students per year.
13) $\$ 512.99$
14) 13 yr
15) -39
